
ADXL345 Digital Accelerometer
Created by Bill Earl

https://learn.adafruit.com/adxl345-digital-accelerometer

Last updated on 2024-06-03 01:18:05 PM EDT

©Adafruit Industries Page 1 of 30

5

8

11

13

19

21

28

28

Table of Contents

Overview
• How it Works

Pinouts
• Power Pins
• I2C Pins
• Other Pins
• LED Jumper

Assembly and Wiring
• Assembly
• I2C Wiring

Programming and Calibration
• Install the Library:
• Test:
• Calibrate:
• Gravity as a Calibration Reference
• Calibration Method:
• Mount the Sensor:
• Load the Calibration Sketch:
• Position the Block:
• Reposition the Block:
•
• Repeat:
• (Hint:)
• Calibration Results:
• Calibration Sketch:
• Typical Calibration Output:

Library Reference
• Constructor:
• Initialization()
• Sensor Details:
• Getting and Setting the operating range:
• Getting and Setting the Data Rate:
• Reading Sensor Events:

Python and CircuitPython
• CircuitPython Microcontroller Wiring
• Python Computer Wiring
• Library Installation
• Python Installation of the ADXL34x Library
• CircuitPython & Python Usage
• Full Example Code
• Motion, Tap and Freefall

Python Docs

Downloads
• Files

©Adafruit Industries Page 2 of 30

• Schematic and Fab Print STEMMA QT Version
• Schematic and Fab Print Original Version

©Adafruit Industries Page 3 of 30

©Adafruit Industries Page 4 of 30

Overview
Filling out Adafruit's accelerometer offerings, we now have the really lovely digital
ADXL345 from Analog Devices, a triple-axis accelerometer with digital I2C and SPI
interface breakout. We added an on-board 3.3V regulator and logic-level shifting
circuitry, making it a perfect choice for interfacing with any 3V or 5V microcontroller
such as the Arduino.

The sensor has three axes of measurements, X Y Z, and pins that can be used either
as I2C or SPI digital interfacing. You can set the sensitivity level to either +-2g, +-4g,
+-8g or +-16g. The lower range gives more resolution for slow movements, the higher
range is good for high speed tracking. The ADXL345 is the latest and greatest from
Analog Devices, known for their exceptional quality MEMS devices.

©Adafruit Industries Page 5 of 30

We added an on-board 3.3V regulator and logic-level shifting circuitry, making it a
perfect choice for interfacing with any 3V or 5V microcontroller or computer, such as
Arduino or Raspberry Pi.

There are both Arduino (C/C++) (https://adafru.it/ZcW)and CircuitPython (Python 3)
libraries (https://adafru.it/ZcX) available, so you can use it with any microcontroller like
Arduino, ESP8266, Metro, etc. (https://adafru.it/Elp) or with Raspberry Pi or other Linux
computers (https://adafru.it/Yne) thanks to Blinka (our CircuitPython library support
helper).

©Adafruit Industries Page 6 of 30

https://learn.adafruit.com/adxl345-digital-accelerometer
https://learn.adafruit.com/adxl345-digital-accelerometer
https://learn.adafruit.com/adxl345-digital-accelerometer/python-and-circuitpython
https://learn.adafruit.com/adxl345-digital-accelerometer/python-and-circuitpython
https://learn.adafruit.com/adxl343-breakout-learning-guide/arduino
https://learn.adafruit.com/adxl343-breakout-learning-guide/circuitpython
https://learn.adafruit.com/adxl343-breakout-learning-guide/circuitpython

As if that weren't enough, we've also added SparkFun qwiic (https://adafru.it/
Fpw) compatible STEMMA QT (https://adafru.it/Ft4) connectors for the I2C bus so you
don't even need to solder. Just wire up to your favorite micro with a plug-and-play
cable to get accelerometer data ASAP. For a no-solder experience, just wire up to
your favorite micro (https://adafru.it/Zbo) using a STEMMA QT adapter cable. (https://
adafru.it/JnB)

The Stemma QT connectors also mean the ADXL can be used with our various
associated accessories. (https://adafru.it/Ft6) A QT cable is not included, but we have
a variety in the shop (https://adafru.it/17VE)

Each order comes with a fully tested and assembled breakout and some header for
soldering to a PCB or breadboard. Comes with 0.1" standard header in case you want
to use it with a breadboard or perfboard. Four 2.5mm (0.1") mounting holes for easy
attachment. You'll be up and running in under 5 minutes

The ADXL345 is a low-power, 3-axis MEMS accelerometer modules with both I2C and
SPI interfaces. The Adafruit Breakout boards for these modules feature on-board 3.3v
voltage regulation and level shifting which makes them simple to interface with 5v
microcontrollers such as the Arduino.

The ADXL345 features 4 sensitivity ranges from +/- 2G to +/- 16G. And it supports
output data rates ranging from 10Hz to 3200Hz.

ADXL345 datasheet (https://adafru.it/c5e)

©Adafruit Industries Page 7 of 30

https://www.sparkfun.com/qwiic
https://learn.adafruit.com/introducing-adafruit-stemma-qt
https://www.adafruit.com/category/621
https://www.adafruit.com/category/621
https://www.adafruit.com/?q=stemma%20qt%20cable
https://www.adafruit.com/?q=JST%20SH%204
https://www.adafruit.com/?q=JST%20SH%204
https://www.adafruit.com/?q=stemma+qt+cable&sort=BestMatch
https://www.adafruit.com/?q=stemma+qt+cable&sort=BestMatch
http://www.analog.com/static/imported-files/data_sheets/ADXL345.pdf

How it Works
MEMS - Micro Electro-Mechanical Systems

The sensor consists of a micro-machined structure on a silicon wafer. The structure is
suspended by polysilicon springs which allow it to deflect smoothly in any direction
when subject to acceleration in the X, Y and/or Z axis.

Deflection causes a change in capacitance between fixed plates and plates attached
to the suspended structure. This change in capacitance on each axis is converted to
an output voltage proportional to the acceleration on that axis.

Pinouts
The ADXL345 breakout has the following pinout:

There are two versions of this board - the STEMMA QT version shown above, and
the original header-only version shown below. The code works the same on both!

©Adafruit Industries Page 8 of 30

The default I2C address for this board is 0x53.

Power Pins

This breakout board can be run on 3.3V and 5V systems. We added an on-board 3.3V
regulator and logic-level shifting circuitry, making it a perfect choice for interfacing
with any 3V or 5V microcontroller such as the Arduino.

VIN - This is the input to the 3.3V voltage regulator, which makes it possible to
use the 3.3V sensor on 5V systems. It also determines the logic level of the SCL
and SDA pins. Connect this to 3.3V on the MCU for 3.3V boards (Adafruit
Feathers), or 5.0V for 5V Arduinos (Arduino Uno, etc.).

•

©Adafruit Industries Page 9 of 30

3Vo - This is the OUTPUT of the 3.3V regulator, and can be used to provide 3.3V
power to other parts of your project if required (< 100mA).
GND - Connect this to the GND pin on your development board to make sure
they are sharing a common GND connection, or the electrons won't have
anywhere to flow!

I2C Pins
SCL - The clock line on the I2C bus. This pin has an internal pullup resistor on
the PCB, which is required as part of the I2C spec, meaning you don't need to
add one externally yourself. This also functions as SCK in SPI mode.
SDA - The data line on the I2C bus. This pin has an internal pullup resistor on
the PCB, which is required as part of the I2C spec, meaning you don't need to
add one externally yourself. This also functions as MOSI in SPI mode.
STEMMA QT (https://adafru.it/Ft4) - These connectors allow you to connect to
development boards with STEMMA QT connectors, or to other things,
with various associated accessories (https://adafru.it/JRA).

Other Pins
SDO/ALT ADDR - This pin can be used as MISO in SPI mode, but is more
commonly used as an optional bit in the I2C bus address. By default this pin is
pulled down, meaning it has a value of 0 at startup, which will results in an I2C
address of 0x53. If you set this pin high (to 3.3V), and reset, the I2C address will
be updated to 0x1D.
CS: This dual purpose pin can be used as the chip select line in SPI mode, but
also determines whether the board will boot up into I2C or SPI mode. The
default of logic high sets the board up for I2C, and manually setting this pin low
and resetting will cause the device to enter SPI mode. Please note that SPI
mode is not actively support and the SPI pins are not all 5V safe and level
shifted, so care will be required when using it!
INT1 and INT2: There are two optional interrupt output pins on this sensor,
which can be configured to change their state when one or more 'events' occur.
For details on how to use these interrupts, see the Arduino/HW Interrupts page
later in this guide.

•

•

•

•

•

The available pins are identical for both versions of the boards. However, on the
STEMMA QT version, pins I2 (INT2), SDO, and CS are located at the top of the
board.

•

•

•

©Adafruit Industries Page 10 of 30

https://learn.adafruit.com/introducing-adafruit-stemma-qt
https://learn.adafruit.com/introducing-adafruit-stemma-qt
https://www.adafruit.com/category/619
https://www.adafruit.com/category/619

LED Jumper
LED jumper - This jumper is located on the back of the board. Cut the trace on
this jumper to cut power to the "on" LED.

Assembly and Wiring

The board comes with all surface-mount components pre-soldered. The included
header strip can be soldered on for convenient use on a breadboard or with 0.1"
connectors. However, for applications subject to extreme accelerations, shock or
vibration, locking connectors or direct soldering is advised.

Assembly

Position the Header
Cut the header to size if necessary. Then
plug the header - long pins down - into a
breadboard to stabilize it for soldering.

•

©Adafruit Industries Page 11 of 30

https://learn.adafruit.com//assets/6363
https://learn.adafruit.com//assets/6363

Add the Breakout
Align the breakout board and place it over
the header pins on the breadboard.

And Solder
Be sure to solder all pins to assure good
electrical contact.

I2C Wiring

The ADXL345 Breakout has an I2C address of 0x53. It can share the I2C bus with
other I2C devices as long as each device has a unique address. Only 4 connections
are required for I2C communication:

GND -> GND
VIN -> +5v
SDA -> SDA (Analog 4 on "Classic Arduinos")
SCL -> SCL (Analog 5 on "Classic Arduinos")

The Adafruit breakout has level shifting and regulation circuitry so you can power it
from 3-5V and use 3V or 5V logic levels for I2C.

•
•
•
•

©Adafruit Industries Page 12 of 30

https://learn.adafruit.com//assets/6364
https://learn.adafruit.com//assets/6364
https://learn.adafruit.com//assets/6365
https://learn.adafruit.com//assets/6365

Connect SCL on the Metro to SCL (yellow
wire) on the ADXL343
Connect SDA on the Metro to SDA (blue
wire) in the ADXL343
Connect GND on the Metro to GND (black
wire) on the ADXL343
For 3.3V LOGIC boards: connect 3.3V on
the Arduino/Metro to VIN (red wire) on the
ADXL343
For 5.0V LOGIC boards: Connect 5V on
the Arduino/Metro to VIN (red wire) on the
ADXL343

Programming and Calibration

Install the Library:
Download the ADXL345 library (https://adafru.it/aZn) and install it. You will also need
the Adafruit Sensor Library (https://adafru.it/aZm) if you do not already have it
installed.

This guide (https://adafru.it/aYM) will help you with the install process.

©Adafruit Industries Page 13 of 30

https://learn.adafruit.com//assets/110186
https://learn.adafruit.com//assets/110186
https://learn.adafruit.com//assets/110187
https://learn.adafruit.com//assets/110187
https://learn.adafruit.com//assets/110189
https://learn.adafruit.com//assets/110189
https://github.com/adafruit/Adafruit_ADXL345
https://github.com/adafruit/Adafruit_Sensor
http://learn.adafruit.com/adafruit-all-about-arduino-libraries-install-use

Test:
Click "File->Examples->Adafruit_ADXL345->sensortest" to load the example sketch
from the library.

Then click on the compile/upload button to compile and upload the sketch to the
Arduino. You should see output similar to below. Watch the values change as you
move the board around.

Calibrate:
The ADXL chips are calibrated at the factory to a level of precision sufficient for most
purposes. For critical applications where a higher degree of accuracy is required, you
may wish to re-calibrate the sensor yourself.

Calibration does not change the sensor outputs. But it tells you what the sensor
output is for a known stable reference force in both directions on each axis. Knowing
that, you can calculate the corrected output from a sensor reading.

©Adafruit Industries Page 14 of 30

Gravity as a Calibration Reference
Acceleration can be measured in units of gravitational force or "G", where 1G
represents the gravitational pull at the surface of the earth. Gravity is a relatively
stable force and makes a convenient and reliable calibration reference for surface-
dwelling earthlings.

Calibration Method:
To calibrate the sensor to the gravitational reference, you need to determine the
sensor output for each axis when it is precisely aligned with the axis of gravitational
pull. Laboratory quality calibration uses precision positioning jigs. The method
described here is simple and gives surprisingly good results with just a block of wood.

Mount the Sensor:
FIrst mount the sensor securely to a block or a box. The size is not important, as long
as all the sides are at right angles. The material is not important as long as it is fairly

©Adafruit Industries Page 15 of 30

rigid.

Load the Calibration Sketch:
Load and run the Calibration sketch below. Open the Serial Monitor and wait for the
prompt.

Position the Block:
Place the block on a firm flat surface such
as a sturdy table. Type a character in the
Serial Monitor and hit return. The sketch
will take a measurement on that axis and
print the results.

Reposition the Block:
Turn the block so a different side is flat on
the table and type another key to measure
that axis.
 (https://adafru.it/c5g)

Repeat:
Repeat for all six sides of the block to
measure the positive and negative aspects
of each axis.

©Adafruit Industries Page 16 of 30

https://learn.adafruit.com//assets/6465
https://learn.adafruit.com//assets/6465
https://learn.adafruit.com//assets/6467
https://learn.adafruit.com//assets/6467
http://learn.adafruit.com/adxl345-digital-accelerometer/programming#repeat
https://learn.adafruit.com//assets/6468
https://learn.adafruit.com//assets/6468

(Hint:)
For the sides obstructed by the breakout
board and/or wires, press the block up
against the bottom of the table while
taking the reading.

Calibration Results:
Once all six sides have been sampled, the values printed in the Serial Monitor will
represent actual measurements for +/- 1G forces on each axis. These values can be
used to re-scale readings for better accuracy.

Calibration Sketch:

#include <Wire.h>
#include <Adafruit_Sensor.h>
#include <Adafruit_ADXL345_U.h>

/* Assign a unique ID to this sensor at the same time */
Adafruit_ADXL345_Unified accel = Adafruit_ADXL345_Unified(12345);

float AccelMinX = 0;
float AccelMaxX = 0;
float AccelMinY = 0;
float AccelMaxY = 0;
float AccelMinZ = 0;
float AccelMaxZ = 0;

void setup(void)
{
 Serial.begin(9600);
 Serial.println("ADXL345 Accelerometer Calibration");
 Serial.println("");

 /* Initialise the sensor */
 if(!accel.begin())
 {
 /* There was a problem detecting the ADXL345 ... check your connections */
 Serial.println("Ooops, no ADXL345 detected ... Check your wiring!");
 while(1);
 }
}

void loop(void)
{
 Serial.println("Type key when ready...");
 while (!Serial.available()){} // wait for a character

 /* Get a new sensor event */
 sensors_event_t accelEvent;

©Adafruit Industries Page 17 of 30

https://learn.adafruit.com//assets/6469
https://learn.adafruit.com//assets/6469

 accel.getEvent(&accelEvent);

 if (accelEvent.acceleration.x < AccelMinX) AccelMinX =
accelEvent.acceleration.x;
 if (accelEvent.acceleration.x > AccelMaxX) AccelMaxX =
accelEvent.acceleration.x;

 if (accelEvent.acceleration.y < AccelMinY) AccelMinY =
accelEvent.acceleration.y;
 if (accelEvent.acceleration.y > AccelMaxY) AccelMaxY =
accelEvent.acceleration.y;

 if (accelEvent.acceleration.z < AccelMinZ) AccelMinZ =
accelEvent.acceleration.z;
 if (accelEvent.acceleration.z > AccelMaxZ) AccelMaxZ =
accelEvent.acceleration.z;

 Serial.print("Accel Minimums: "); Serial.print(AccelMinX); Serial.print("
");Serial.print(AccelMinY); Serial.print(" "); Serial.print(AccelMinZ);
Serial.println();
 Serial.print("Accel Maximums: "); Serial.print(AccelMaxX); Serial.print("
");Serial.print(AccelMaxY); Serial.print(" "); Serial.print(AccelMaxZ);
Serial.println();

 while (Serial.available())
 {
 Serial.read(); // clear the input buffer
 }
}

Typical Calibration Output:

ADXL345 Accelerometer Calibration

Type key when ready...
Accel Minimums: 0.00 0.00 0.00
Accel Maximums: 0.12 0.20 1.14
Type key when ready...
Accel Minimums: 0.00 0.00 0.00
Accel Maximums: 0.12 0.20 1.14
Type key when ready...
Accel Minimums: 0.00 0.00 0.00
Accel Maximums: 0.12 0.20 1.14
Type key when ready...
Accel Minimums: 0.00 0.00 0.00
Accel Maximums: 0.12 0.20 1.14
Type key when ready...
Accel Minimums: 0.00 0.00 -0.24
Accel Maximums: 0.12 1.37 1.14
Type key when ready...
Accel Minimums: 0.00 0.00 -0.24
Accel Maximums: 0.12 1.37 1.14
Type key when ready...
Accel Minimums: 0.00 -1.22 -0.27
Accel Maximums: 0.12 1.37 1.14
Type key when ready...
Accel Minimums: 0.00 -1.22 -0.27
Accel Maximums: 0.12 1.37 1.14
Type key when ready...
Accel Minimums: -1.18 -1.22 -0.27
Accel Maximums: 0.12 1.37 1.14
Type key when ready...

©Adafruit Industries Page 18 of 30

The results of the calibration sketch can be used to do a two-point calibraton as
described here: Two Point Calibration (https://adafru.it/Dva)

Library Reference

Constructor:
Adafruit_ADXL345(int32_t sensorID = -1)

Constructs an instance of the ADXL345 device driver object. 'sensorID' is a device
identifier. It will be returned in the sensor_event in each call to getEvent(). The
sensorID has no effect on the operation of the driver or device, but is useful in
managing sensor events in systems with multiple sensors.

Initialization()
bool begin(void)

The begin() function initializes communication with the device. The return value is
'true' if it succeeds in connecting to the ADXL345.

Sensor Details:
void getSensor(sensor_t*);

The getSensor() function returns basic information about the sensor. For details about
the sensor_t structure, refer to the ReadMe file (https://adafru.it/aZm) for the Adafruit
Sensor Library.

Getting and Setting the operating range:
void setRange(range_t range)

The setRange() function sets the operating range for the sensor. Higher values will
have a wider measurement range. Lower values will have more sensitivity.

Valid range constants are:

ADXL345_RANGE_16_G
ADXL345_RANGE_8_G
ADXL345_RANGE_4_G

•
•
•

©Adafruit Industries Page 19 of 30

https://learn.adafruit.com/calibrating-sensors/two-point-calibration
https://github.com/adafruit/Adafruit_Sensor

ADXL345_RANGE_2_G (default value)

range_t getRange(void);

The getRange() function returns the current operating range as set by setRange()

Getting and Setting the Data Rate:
void setDataRate(dataRate_t dataRate);

The setDataRate() function sets the rate at which the sensor output is updated. Rates
above 100 Hz will exhibit increased noise. Rates below 6.25 Hz will be more sensitive
to temperature variations. See the data sheet (https://adafru.it/c5e) for details.

Valid data rate constants are:

ADXL345_DATARATE_3200_HZ
ADXL345_DATARATE_1600_HZ
ADXL345_DATARATE_800_HZ
ADXL345_DATARATE_400_HZ
ADXL345_DATARATE_200_HZ
ADXL345_DATARATE_100_HZ
ADXL345_DATARATE_50_HZ
ADXL345_DATARATE_25_HZ
ADXL345_DATARATE_12_5_HZ
ADXL345_DATARATE_6_25HZ
ADXL345_DATARATE_3_13_HZ
ADXL345_DATARATE_1_56_HZ
ADXL345_DATARATE_0_78_HZ
ADXL345_DATARATE_0_39_HZ
ADXL345_DATARATE_0_20_HZ
ADXL345_DATARATE_0_10_HZ (default value)

dataRate_t getDataRate(void);

The getDataRate() function returns the current data rate as set by setDataRate().

•

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

©Adafruit Industries Page 20 of 30

http://www.analog.com/static/imported-files/data_sheets/ADXL345.pdf

Reading Sensor Events:
void getEvent(sensors_event_t*);

The getEvent() function returns the next available reading in the form of a
sensor_event. The sensor_event contains the sensor_id as passed to the constructor
as well as the X, Y and Z axis readings from the accelerometer. For more information
about sensor_events, see the ReadMe file (https://adafru.it/aZm) for the Adafruit
Sensor Library.

Python and CircuitPython
It's easy to use the ADXL343 or the ADXL345 with Python and CircuitPython, and the
Adafruit CircuitPython ADXL34x (https://adafru.it/E5S) module. This module allows you
to easily write Python code that reads the acceleration, taps, motion and more from
the breakout.

You can use this sensor with any CircuitPython microcontroller board or with a
computer that has GPIO and Python thanks to Adafruit_Blinka, our CircuitPython-for-
Python compatibility library (https://adafru.it/BSN).

CircuitPython Microcontroller Wiring

First, wire up the breakout exactly as shown in the previous pages. Here is an
example of wiring the ADXL343 to a Feather M0:

The pinouts on the ADXL343 and the ADXL345 are slightly different, but the
chips are essentially identical. This page includes different wiring diagrams for
each. Other than initialising the proper chip, the code will be the same for both!

©Adafruit Industries Page 21 of 30

https://github.com/adafruit/Adafruit_Sensor
https://github.com/adafruit/Adafruit_CircuitPython_ADXL34x
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux

Connect SCL (yellow wire in STEMMA QT
version) on the Feather to SCL on the
ADXL343
Connect SDA (blue wire in STEMMA QT
version) on the Feather to SDA in the
ADXL343
Connect GND (black wire in STEMMA QT
version) on the Feather to GND on the
ADXL343
Connect 3.3V (red wire in STEMMA QT
version) on the Feather to VIN on the
ADXL343

Here's an example of wiring the ADXL345 to a Feather M0:

©Adafruit Industries Page 22 of 30

https://learn.adafruit.com//assets/110015
https://learn.adafruit.com//assets/110015
https://learn.adafruit.com//assets/110016
https://learn.adafruit.com//assets/110016
https://learn.adafruit.com//assets/110017
https://learn.adafruit.com//assets/110017

Connect SCL (blue wire) on the Feather to
SCL on the ADXL345
Connect SDA (yellow wire) on the Feather
to SDA in the ADXL345
Connect GND (black wire) on the Feather
to GND on the ADXL345
Connect 3.3V (red wire) on the Feather to
VIN on the ADXL345

Python Computer Wiring

Since there's dozens of Linux computers/boards you can use we will show wiring for
Raspberry Pi. For other platforms, please visit the guide for CircuitPython on Linux to
see whether your platform is supported (https://adafru.it/BSN).

The following shows a Raspberry Pi connected to the ADXL343:

©Adafruit Industries Page 23 of 30

https://learn.adafruit.com//assets/110179
https://learn.adafruit.com//assets/110179
https://learn.adafruit.com//assets/110180
https://learn.adafruit.com//assets/110180
https://learn.adafruit.com//assets/110182
https://learn.adafruit.com//assets/110182
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux

Connect SCL (yellow wire in STEMMA QT
version) on the RPi to SCL on the
ADXL343
Connect SDA (blue wire in STEMMA QT
version) on the Rpi to SDA in the ADXL343
Connect GND (black wire in STEMMA QT
version) on the Rpi to GND on the
ADXL343
Connect 3.3V (red wire in STEMMA QT
version) on the Rpi to VIN on the ADXL343

The following shows a Raspberry Pi connected to the ADXL345:

©Adafruit Industries Page 24 of 30

https://learn.adafruit.com//assets/110018
https://learn.adafruit.com//assets/110018
https://learn.adafruit.com//assets/110019
https://learn.adafruit.com//assets/110019
https://learn.adafruit.com//assets/110020
https://learn.adafruit.com//assets/110020

Connect SCL (blue wire) on the RPi to SCL
on the ADXL345
Connect SDA (yellow wire) on the RPi to
SDA in the ADXL345
Connect GND (black wire) on the RPi to
GND on the ADXL345
Connect 3.3V (red wire) on the RPi to VIN
on the ADXL345

Library Installation

You'll need to install the Adafruit CircuitPython ADXL34x (https://adafru.it/E5S) library
on your CircuitPython board.

First make sure you are running the latest version of Adafruit CircuitPython (https://
adafru.it/Amd) for your board.

©Adafruit Industries Page 25 of 30

https://learn.adafruit.com//assets/110183
https://learn.adafruit.com//assets/110183
https://learn.adafruit.com//assets/110184
https://learn.adafruit.com//assets/110184
https://learn.adafruit.com//assets/110185
https://learn.adafruit.com//assets/110185
https://github.com/adafruit/Adafruit_CircuitPython_ADXL34x
https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython

Next you'll need to install the necessary libraries to use the hardware--carefully follow
the steps to find and install these libraries from Adafruit's CircuitPython library
bundle (https://adafru.it/ENC). Our CircuitPython starter guide has a great page on
how to install the library bundle (https://adafru.it/ABU).

For non-express boards like the Trinket M0 or Gemma M0, you'll need to manually
install the necessary libraries from the bundle:

adafruit_adxl34x.mpy
adafruit_bus_device

Before continuing make sure your board's lib folder or root filesystem has
the adafruit_adxl34x.mpy, and adafruit_bus_device files and folders copied over.

Next connect to the board's serial REPL (https://adafru.it/pMf)so you are at the
CircuitPython >>> prompt.

Python Installation of the ADXL34x Library

You'll need to install the Adafruit_Blinka library that provides the CircuitPython
support in Python. This may also require enabling I2C on your platform and verifying
you are running Python 3. Since each platform is a little different, and Linux changes
often, please visit the CircuitPython on Linux guide to get your computer
ready (https://adafru.it/BSN)!

Once that's done, from your command line run the following command:

sudo pip3 install adafruit-circuitpython-adxl34x

If your default Python is version 3 you may need to run 'pip' instead. Just make sure
you aren't trying to use CircuitPython on Python 2.x, it isn't supported!

CircuitPython & Python Usage

To demonstrate the usage of the breakout we'll initialize it and read the acceleration
and more from the board's Python REPL.

Run the following code to import the necessary modules and create the I2C object:

•
•

•

©Adafruit Industries Page 26 of 30

https://circuitpython.org/libraries
https://circuitpython.org/libraries
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-libraries
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-libraries
https://learn.adafruit.com/micropython-basics-how-to-load-micropython-on-a-board/serial-terminal
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux

import time
import board
import adafruit_adxl34x

i2c = board.I2C()

If you're using the ADXL343, run the following to initialise the I2C connection with the
breakout:

accelerometer = adafruit_adxl34x.ADXL343(i2c)

If you're using the ADXL345, run the following to initialise the I2C connection with the
breakout:

accelerometer = adafruit_adxl34x.ADXL345(i2c)

Now you're ready to read values from and enable features of the breakout using any
of the following:

acceleration - The acceleration values on the x, y and z axes
enable_motion_detection - Enables motion detection. Allows for setting
threshold. Threshold defaults to 18.
enable_tap_detection - Enables tap detection. Allows for single or double-tap
detection.
enable_freefall_detection - Enables freefall detection. Allows for setting
threshold and time. Threshold defaults to 10, time defaults to 25.
events - Used to read the events when motion detection, tap detection and
freefall detection are enables. Requires specifying which event you are trying to
read.

To print the acceleration values:

while True:
print(accelerometer.acceleration)
time.sleep(0.2)

•
•

•

•

•

©Adafruit Industries Page 27 of 30

That's all there is to reading acceleration values from the ADXL343 and ADXL345
using CircuitPython!

Full Example Code

SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries
SPDX-License-Identifier: MIT

import time
import board
import adafruit_adxl34x

i2c = board.I2C() # uses board.SCL and board.SDA
i2c = board.STEMMA_I2C() # For using the built-in STEMMA QT connector on a
microcontroller

For ADXL343
accelerometer = adafruit_adxl34x.ADXL343(i2c)
For ADXL345
accelerometer = adafruit_adxl34x.ADXL345(i2c)

while True:
print("%f %f %f" % accelerometer.acceleration)
time.sleep(0.2)

Motion, Tap and Freefall

There are examples for enabling and using motion, tap and freefall available on
GitHub:

Motion detection on the ADXL343 and ADXL345 (https://adafru.it/G7d)
Tap detection on the ADXL343 and ADXL345 (https://adafru.it/G7e)
Freefall detection on the ADXL343 and ADXL345 (https://adafru.it/G7f)

Save any of the files as code.py on your CircuitPython board, or run them from the
Python REPL on your Linux computer, to try them out.

Python Docs
Python Docs (https://adafru.it/E7c)

Downloads
Files

ADXL345 datasheet (https://adafru.it/ZcY)

•
•
•

•

©Adafruit Industries Page 28 of 30

https://github.com/adafruit/Adafruit_CircuitPython_ADXL34x/blob/master/examples/adxl34x_motion_detection_test.py
https://github.com/adafruit/Adafruit_CircuitPython_ADXL34x/blob/master/examples/adxl34x_tap_detection_test.py
https://github.com/adafruit/Adafruit_CircuitPython_ADXL34x/blob/master/examples/adxl34x_freefall_detection_test.py
https://circuitpython.readthedocs.io/projects/adxl34x/en/latest/
https://cdn-learn.adafruit.com/assets/assets/000/110/160/original/ADXL345.pdf?1648220243

Fritzing object (STEMMA QT version) in the Adafruit Fritzing Library (https://
adafru.it/Zc-)
Fritzing object (original version) in the Adafruit Fritzing Library (https://adafru.it/
Zd3)
EagleCAD PCB files on GitHub (https://adafru.it/rEH)

Schematic and Fab Print STEMMA QT Version

•

•

•

©Adafruit Industries Page 29 of 30

https://github.com/adafruit/Fritzing-Library/blob/master/parts/Adafruit%20ADXL345%20STEMMA%20QT.fzpz
https://github.com/adafruit/Fritzing-Library/blob/master/parts/Adafruit%20ADXL345.fzpz
https://github.com/adafruit/Adafruit_ADXL345_PCB

Schematic and Fab Print Original Version

©Adafruit Industries Page 30 of 30

	ADXL345 Digital Accelerometer
	Table of Contents
	Overview
	Pinouts
	Assembly and Wiring
	Programming and Calibration
	Library Reference
	Python and CircuitPython
	Python Docs
	Downloads

	Overview
	How it Works
	MEMS - Micro Electro-Mechanical Systems

	Pinouts
	Power Pins
	I2C Pins
	Other Pins
	LED Jumper

	Assembly and Wiring
	Assembly
	Position the Header
	Add the Breakout
	And Solder

	I2C Wiring

	Programming and Calibration
	Install the Library:
	Test:
	Calibrate:
	Gravity as a Calibration Reference
	Calibration Method:
	Mount the Sensor:
	Load the Calibration Sketch:
	Position the Block:
	Reposition the Block:
	(https://adafru.it/c5g)
	Repeat:
	(Hint:)
	Calibration Results:
	Calibration Sketch:
	Typical Calibration Output:

	Library Reference
	Constructor:
	Initialization()
	Sensor Details:
	Getting and Setting the operating range:
	Getting and Setting the Data Rate:
	Reading Sensor Events:
	Python and CircuitPython
	CircuitPython Microcontroller Wiring
	Python Computer Wiring
	Library Installation
	Python Installation of the ADXL34x Library
	CircuitPython & Python Usage
	Full Example Code
	Motion, Tap and Freefall

	Python Docs
	Downloads
	Files
	Schematic and Fab Print STEMMA QT Version
	Schematic and Fab Print Original Version

